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Abstraet - This paper employs the method of flexible non-
linear inference to analyse nonlinearities in time-series data
for the USE / A$ exchange rate. By treating the functional
furm: of the relatiouship between present and lagged ex-
change rate returns as a random variable itself, it is possible
to identiy features of a nonlinear relationship which fachi-
tirte thie search for an adequate underlying nonlinear modei.
The application to daily exchange rate data illustrates the
uselllness and lmitations of this method and reveals that
the USE / A% exchange rate switehes between very complex
[IrGCOsses.

I INTRODUCTION

The recognition that easily detectable linear structure
onght not to be o connnon feature of data generated by ef
fictent francial markets has led to increased interest i de-
teeting axd wodelling nenlinear structure in financial data.
Numerous tests have been develaped to detect the existonce
of novlincaritios (Ranmsey, [1968], Mcleod and Li, [1983],
Koenan, [1083], Fuay, [1986], White, [1987}{1989}{1992a],
Brocic et al., [1996], Thinich, [1982], Ashley et af, [1986], Liv
ef al, [1993], Palug of «l. [1995]) and their empirical per-
formance i woll docimented (Lee ef of,, [1993], Teresvirta
et ol {19931 Brooks, [1996). Becker and Hurn, {1999]). It
s clear, however, that detection is just a first step; the
final goal must be to model the data-generating process.
The paramaetric approach te the modeliing exercise offers a
bewildering array of potential models, but little or no indi-
cation as to which should he used (Terfisvirta et al., [1994})
and this has led to an increasing reliance on nonparametric
techuiques {Campbell of wl., {1997)).

A recont advance, pioneered by FHamilton [1999], seems
toraffer o valuable addition to the methads for dealing with
nowlinearities in tise-series data. The technique, known as
flexible nonlinear inference, is desipned to have the same
Hexibility as nouparametric estimation methods, but retain
Hie inforence capabilitics of parametric methods. It has
heen shown that this appronch not onty has the ability
to model simulated noulinearities, but also that the test
for vonlinearity, which is obtained as a by-product, vields
eneouraging empivieal results (Dahl, [1998]).

The contribution of this paper is to examine the useful-
ness of the method using relatively high frequency Aus.
tradinn exchange rate data. After a brief exposition of the
method, it is applied (o dally foreign exchange rate data
{USS/A8). Fowr distinet periods of nonlinearity in the be-
haviour of the date are identified and each of these is mod-
eled. The natuee of the appropriate model in each case

appears o be markedly dilferent, thus negating any pre-
simuption that these episodes exhibit similar kinds of non-

lincarity, In addition the usefullness of the chosen models
for forecasting purposes appears lmited.

TI. FLEXIBLE NONLINUAR INFERENCE

I a conventional econometric formulation, the function
representing the couditional expectation of a dependent
variable, y, is assunied to be deterministic function of ex-
planatory variables, = It is thus the orror term which
accounts for the stochastic nature of i, hence
g ~ Hd(0, o)

{1

We == p{xe) - £

Hamilton {1099] suggests viewing p{x,) i#sell as a random
variable and shows that this allows a Hexible and power-
ful representation of both linear and nonbinear functional
forms.  As p(x) is stochastic, it cannot be ohserved di-
rectly. The objective is to draw inference about the madel
parameters by observing the realisations of y, and x, only.

Assume the two random variables y and p(x) are mul-

tivariate normatt
$3a
’ Qg

(,ﬁ?’x) )NN([

then the optimal forecast of @(x) using information an
¥ is distzibuted as follows (Hamilton, [1994])

{2y
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H#y
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20y ~ N (o + Qo107 iy — 1), Qg — 921917119(12) .
2}
Conditional an y therefore the expectation of the condi-
tional menn may be either linear or nonlinesr dependent
on the form of the covariance between y and p(x), the
matrix £2ay. )
Accordingly, et u{x.) be given by

p{xe) = g+ el + Amfg o) {3
with ap and A scalar parameters, e and g are (k x 1)
parameter vectors, ) represents clement by clement mul-
tipiication and m(-} is a random variable. The parameters
o and @y govern the linear contribution of . to e},
while the scale parameter A determines the weight of the
noalinear contribution to ji(x} and g will be shown to be
a crucial element in the covariance calculation.

For any 3 and x it is possible to find & livear mapping f
such that E{y ~{{x)} = 0. This mapping is represented by
ag+ox in {3). K is therefore abvious that the E {(m(-)) =
{is required in order to achieve unbiased esthnates of p(x).
Consequently any nonlinear pattern has to be captured by
the covariance matrix of m{"), consistent with {2} above,

b walidiey of this assiinption st he an empiriend question, As
tio method bas been shown by Dabl {[1998]) to captare aowide cluss
ol nanlinear models aconrntely there §s at least an o priovt spicical
case bo support this assuption,
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Specifically. the properties of v} may be enumerated as
follonws

iz ) ~ N0, 1)
f Hiflhy ifh<1

0 atherwise

e} {2 — 2.

iz ) miz)
oo é\(z.,

where closed forn expressions for Hp(h) are derived in
amilton (JLI999 for & = 1,...,5. The important thing
to note is that the covariance is unity when b = 0. The ba-
sic dden s that m(zg) will be correlated with m{zs) when-
over z, and z, are sutficiently close, or more specifically
when |z~ 2z < 2. When making inference taking y as
given, Liis covarianee structure can foree a departure from

ticanty.
At this stage it is usefd to inbroduce a slightly different
Let the following matrices ancd
!

(¥i, ¥, ..vr), B = {an, o,

notation for the model.
voeetors bo defined: y o

g (g1, g9, ) and
ot
Loy
'
| SO
x )
Lt
Loy

Note that:
1. Sinee F () = 0 follows that

(X)) ~ N(X8, Py)

A2HL Uy
polt, &) == { 0 w{hes)

o= 2V o SR (e ]

i hes <1
if hey > 1

D.oSiuce y = g €
y ~ N(Xd, Py o?ly) ()

where Ip is the T-dimensiocual tdentity mabrix.
3. Since A{p(X) X)) = E{y |X) = X8 the unconditional
joint distribution of ¥ and p{X) is

) @

¥ At
(ko )~ {(1%8 ]
w(Xily ~ NXB+Po(Po+ o) My —X8),

Xp
Pg — PalPo -+ 0'211-)"1130)

Py
Py

Ps + JZIT
Pa

4. Using the result in (2), we have

for the conditional distribution. The crucial role of g in
the covariance calenlation is now apparent. When g — oo
“thie distance fiy; between g oxy and g ¢ xg becomes ar-
bitrarily large {(for x; # x4} and therefore the nonlinear
component of the model Py becomes )\QIT which is indis-

tinguishable from the disturbance covariace a?Ip. Likewise .

when g — 0, the nonlinear component Py becowes /\211’,
which makes it indistinguishable from the constant tenm.
Neither of those two extreme cases i an improvement to the
linear model, In theory the cstimated parameters should
avoid these extremes and values should be chosen that are
most approprisde ro the particudar nonlinearity n the data.
4. Furthermore from (4) the unconditional log likelihood
function for y may be written as

T 1
nL{y) = -3 n(2m) - |Py + Iro?|

1 , -
-5 (y —X8) (Po + ITU‘“) : {y ~ X3

(6}

Although v {X ~ N(X3, Py + Lpo?) is not the exact dis-
tribution for stochastic 2, it turns out that (§) remains
validd in these situations.

It is now useful to write

Py =27 Hy(he(X. ) = Po(X.A gl (7)

and to refornmiate Py + Iro? to
Po+1Ipo® = ”zii_jﬁ“ + Iy = a*{CPHy + 1) (8)
= WA g) = cTWIK.8) {h

using ¢ as the ratio of the standard doviation of the non-
linear component to the standard deviation of the residual
5. Purthermore, lot 8 = (X, g}, then by substibuting {8)
into {6} the log likelibood can be rewritten as

T T ;
In L{y) == 5 In{3w) ~ 5 ma? — %1{1 [W{X, 6]
! N
R At X/ WEe) ™ (v - X3)(10)
For given # the GLS estimates (3{#) and 72(8) can he con-

puted as

AHE = (XWEE)TX) XWXy (1)
) = [y - XBON W) Hy - XB(8))/T

Substituting these analytical expressions into (10) yields
a concentrated likelihood function that allows a formula-
tion of the log likelihood function, which is a function of
the observed dependent and independent variables, y and
¥, and the set of nonlinear parameters, 8, only

T T
""“ﬁ-hl(zﬂ') ~-3 e~ (9)

mL{Bly, X} = &
T
'é‘»

1
-5 |W (X 8) — (12)

which may be maximised to yield the ML estimate 8. The
corresponding ML estimates of the linenr parameters are
3(8) and 5%(0) and can bhe caleulated by plugging 8 into

Hamilton proves that this algorithm will provide a con-
sigtent estimator of p{x) for a very general class of models,
betl linear and ponlinear.  Dakl [1098] scrutinised these
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theoretical propositions i a Monte Carlo experinient and
demoustrated tad the methodology does ndecd have the
ability to approximate a vagiety of ditferent shnulated non-
linear provesses.

Finally, it may be noted that testing for nonlinearity in
tleis frmnework smounis to testing whether or not A = {4,
Hamilton {199Y] proposes a LM test for this hypothesis,

t 1

[i1.

After lentifving the preseuce of nonlinear structure in a
dataesed, the next natural step is to attempt o model the
process. Phis is no mean task as there exists a wide va-
riefy of nonlinear models to choose from, but no coherent
framework within which to search for the appropriate spec-
iication®.  Curvent practice, as summarised by Teriisvirta
ef al. [1994] for example, suggests the following procedure,
Omncee the hvpothesis of lnearity is rejected, the data set
b divided into o fraining set and a test set. A selection
of different nonlinear models s estimated using a training
data-set and the model which perforing best in explaining
the values of the test set is selected and reestimated on the
entive sample. This procedure has obvious shortcomings;
for example, models may be included or excluded a pri-
ori without justification and different partitioning of the
sepapie idght vield different resualis,

It will nony be demonstrated bow the flexible functional
form approach, outlined n the previous section, can he
whilised to help identify an underlying data-generating pro-
coss. Thie analysis starts with o maximum Hkelilood es-
timation of {12}, If the parameter A is significantly dif-
ferent from zero, the nonlinear term makes an important
contribution to the conditional expectation function and
the exogenous variable @ causing the nonlinearity can be
identificd by a significant parameter g, In order to find
out how the expected mean pf) depends on the values of
wiy am LNV (B 1)) matrix XY s created.

MODELLING NONLINEAR STRUCTURE

EN (ke B

The values for o are varied around the mean value on as
fine a grid as reguired, while all other variables remain fixed
ab their mean values, Using equation (13)

B =X B o QP+ o Te) Ty - X8) {13}
an (Y x 1) vector of estimated conditional mean values
s gonerated. Plotting X"} against the values of @, fed
info equation (13) produces a pseudo functional plot, which

iliustrates the dependence. of the conditional mean on the

variable w0 I it is suspected that two variables excert

FOF conrse e e case Wobld's reprosentation theerem provides
such o onaework,

their nonlinear nfluence jointly both variables are varied
across a certain range and a three dimensional functional
plot is created using the result in (13}, As denonstrated
in the following paragraph these functional plots facilitate
the identification of possible parametric nonlinear models.

Hamilton provides & number of examples to Ulustrate the
use of pseudo-functional plots. Whilst recognising the use-
fuilness of the method, a primary remalining concern is the
robustaess of the method in the presence of signals with o
high noise content. To investigate this issue a little further
Hamilton's examples were repeated with different signatl to
noise ratios. The resuits of these experiments reveal that
increasing the noise content conceals the presence of non-
linearities. As the noise increases the estimation of the
parameter A becomes less significant.  As heteroscedastic
noise is a widespread feature of fnancial data, the same
experiment was repeatad with ARCH and GARCI noise
compenents, Qualitatively the same results hold.

These results are generally encouraging, particulary
when compared to nonparametric estimation methods.
Methods such as neural networks are known o have the
power to essentially fit finctions to nolse (Weigend, [1996]).
It appears that this type of overfitting will net be & prob-
lem with fexible nonlinear mference, indicating that the
method has a sefficient degree of robustness to tackle noisy
financial data.

IV. MODELLING THE AUSTRALIAN DOLLAR

Exchange rate data have been very closely examined on
nonlinearities with mixed rvesuits (Hsieh, [1986], Brooks,
(1996]). Recent evidence suggests thalt nonlinearities in
exchange rate data are episodic in nature (Guarda and
Salmon, [1996], Becker and Hurn, [1998]). The exchange
rate examined In this paper s the US$ / Australian §
ratet,  Daily data were available from 1 January 1975
to 31 July 1998 (5921 observations). The log returns of
these data were tested for the existence of nonlinearities
using the Neural Network Test - NNT {(Lee et al., [1993]),
the redundancy based surrogate data test - R {Becker and
Hurn, [1999]) and Hamilton's test for nonlinearities - HNL
{Hamiltor, [1999))!. In order to capture the changing na-
ture of the dafa generating process these tests were applied
to a moving time window (N, = 256}, The results are
summarised in Figure 1 which indicates the existence of
significant nonlinearities when two consecutive time win-
dows have p-values below 5%.

IThe rabes wre spot buying rates (1200 aon, Now York tinee) dowie
loaded fram the Website of the Ronrd of Governors of the U8 Federal
Reserve Systam,

CCMINLL to BNLE rapresent varyiog luy speciicabions.
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Figare |0 Noulineariey test resubts for A% /158,

The results clearly lustrate the temporary nature of
nonlincarities’. Four periods were singled out for further
examination, nagmely P1(7-Jul-75 to 13-Jul-76}, P2 (8-Jul-
81 to 15-Jul-82}, P3 (6-Sep-83 to 12-Sep-84) and P4 (13-
Jun-84 o 21-Tun-80.) for which the nonlinearity tests are
siguificant.

‘The estimation rosults for the foar periods are reported
in Table 1% The estimates for ¢ are significant in all four
selected subperiods. This corresponds te significant values
of Ain (3}, Since ¢ is the ratio of the nonlinear compo-
nent’s variance to the variance of the additive noise period
4 appears to be the subperiod with the highest noulinear
compenent content. This is also reflected in highly signifi-
cant estimates for gy and go.

Estimation of the flexible functional form (3) serves as
an anxiliary step to identify a specific parametric model.
"The shape of the pseudo-fanctional plots wilt facilitate the
identification of a particular parametric model, which sub-
sequently will be estimated using conventional estimation
techniques. The residuals resulting from this estimation
should be subject to the nsual battery of disgnostic tests.
A model captures the nonlinearities if nonlinearity tests
applied to the residuals remain insignificant.

Figures 2 contains the pseudo-functional plots for the
cne perios lagged return, which is primarily responsible for

SParther Losting showad: the presence of conditional heteroskedas:
theity throngliont st of the suaple period, The results are not
upn:lml but are aviilible,

Binles f the lwear prrneler vector e not prosented bt
wvailnbde frow the anthoars, -

' tlrln} liotes

the nonlinearity.

Viguern var
B ‘
el

- y X
b
T
4

H -
- i
sl | 1
Tore o o7 kR 2 o 8.3 £ 34

Figure 20 Pseudo-fnnctionad plot (poriod 13, Estimatoed conditions]
return (vertical axis) as o funetion of bgged oxelinnge e retrns

Yr—1thorivontal axis),

One obvious choice to model this nonlinearity is a cu-
bic term in the firss lag, (v — (~0.10% This moadel
was rejected by the data. Alternativ Iy a threshold type
model was tosted, v, = oy + m;f,ril‘ whoere y,*_'__l =
iy > 0.0 and 4, J otherwige, This specification
proved to be satisfactory”. The estimation vields o signifi-
cantly negative estimatbe for . This vesult fndicates that
a negalive autocorrelation bebween subsecuent reburns is
significant only m cases where previous returns were of
substantial positive size. Negative autocorrelation in ox-
change rate returng can be interpreted as a form of mean
raversion. [t seems reasonable to argue that mean reversion
effects should become increasingly important with signifi-
cant departures from a perceived equilibrium value. Tn the
absence of any fundamental news, which might change the
equilibriom value for exchange rates, a large return can
be interpreted as a significant departure from a previously
established equilibrium value. Since during period 1 the
USS/A$ was not a freely foating exchange rabe, bt vather
a very dirty float, mean reversion accords with
nduition.

COONOMIC

The second specified period displays significant nonlin-
earities for the one period lag, as lustrated in Figure 3.
A model, including a constant term and a variable, pro-
portional to the distance of y_; from ~0.05 s sufficient
to yvield an insignificant result for Hamilton's nenlinear-
ity test. However, the neural network and ARCH tests
remained significant. The inclusion of a threshold variable
(U =y iy > 04 and 4 | = 0 otherwise) ad-
dressed this problem. Both variables and the constant term
are estimated highly significant. The residual diagnostics
do not indicate any further problems with this specifica-
tion®.

{im n;, on t-'\:J;,vnmua var l«Ll)il‘ and ARCHY
amd normatity, I\nmmht\ is typically rejected. The rosidnals appeay
to be luptokurtic.

s inferebsing to uote that aomodification in the mean genertiog

process rewovisd signilicnnd aontivearities i the vt
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Fignre 4 Prendo-Dmetional plot {period 23 Bstimated cowditional
vetarn [verticad axis} as o hiuction of pged exchiauge rate vefurns,

Ui oo [orizoutnl nxis).

The fourth period” is u period for which all three applied
tests for ponlinearity indicate a significant departure from
the null bypothesis of linearity. The estimation results re-
veal that the one- and two-period lagged retiuns contribute
to the nonlinear pattern in the data, with the paramecters
Anncd gy and ge all statistically significant.

i. /\
IRAE A

. \ f\ \
: ot 4
bt \" ’; \ ;
) / N/

Figare 1 Peendo-Tunctional plot (perind 4], Estimated canditional
reburne {vertieal axis) as o function ol lagred exclinnge rate returus,

g (herizontad axis}.

Fauen o 2

“r 5 o [ 2 5

Fignre b Psendoshuetionad piol {period ). Bstimated conditional
velurn {vertieal axis} as o Dection af lagped exchange rake retarns,

3.

The pseudo functional plots for y, = fly) and y, =
Flyee) in Figure 4 and 5 confirm this and further reveal
that the. nonlinearity appears to.he more complex than in
the previcus example. Further information can be drawn

Yi—athorizontal axis

; : : . .
Flesnlis for the shivd period are nat prseatesd but available wpon

cregnesto

from the pseudo functional plot v = Fly 1. 2), Figure
6.

Figure (0 Proudo-Tnnctional fsnrface} plot {perind 47 Bstipnied

el verticad axis) as o fonetion of gged

cancditional return {fuve

exchang rate reburns, P pand Yoo (horizontal axis).

The complexity of the nonlinearities is confirmed; indeed
the surface is very irregular and the only pattern which can
possibly be modelled parametrically is the peak around (-
1,1}, The following candidate model was estimated

Yo = og Ly

D= { 1/ /(g — (—13}2 + (g ~ 1)°

if Dy <0.5
if Dy > 0.5
(14)
where [ is the distance from the identified maximum at (-
1,13, While the Hamiiton test on nonlinearities remains
insignificant when applied to this model's residuals, the
redundancy and the neural network test still indicate the
presence of additional noalinear structure. ARCH effects
are also present!!.

To summarise the results thus far, it must be recognised
that whilst there is a reasonably sound theoretical explana-
tion for the nonlinear relationship identified in period i, it
appears that no such economic rationale exists for periods 2
to 4. The explanation of the particular relationships which
are identified remains a puzzie and it must be concluded,
rather lamely, that market dynamics appear to gencrate
very diverse and complex nonlinear patterns in the data.

Naturally the question should be asked whether the ob-
tained estimations might be the result of overfitting. As
the experiment in the previous section suggests, it is un-
likely that the presence of noise causes the tdentification of
spurious nonlinearities. One way of detecting & statistical
overfit is to check whether improved in-sample fit trans
lates into superior out-of-sample forecasting performance
{Weigend et al., [L995]) and hence the B?) as a measure of

e vatues of this maxiooan are approximately spuivadent tooex-
champe rate returns of -1% aid 4+ 1% respectivaly,

UPhis wethodelogy does mok aim bo roaove frse ARCH efferts,
which represeal nondineaiby evarianeo,. e
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be-sample fit, was compared against iwo meoasures of pre-
dictive performance, the RMSE and the MADY. The fore-
casting performance measures were applied to the one-step
ahiend forecasts, based on the parameter estimates from the
xperimentst it
van besaid that the nproved inesanple fit s not indicative

in-siunple estimation. Swmarising these a

for Iiproved forecasting performance.

V.o CONCLUSION

Thie research presentod in this paper allows several con-
clusions. It appears that the method of nonlinear flexible
inference is powerful enough to identify very diverse nonlin-
i reiablonships, A tentative remark bere is that threshoid
type wodels seem to be the easiest to identify, but further
Fe ch iy needed to clarify the range of nonlinear models
which flexible inference can deal with in practice.

In torms of modelling the USS/AS four episodes of non-
linear structure i the dafa were identified. The nature of
the nentbearities was distinctively different for each of the
four wdentified episodes. This implies that simple regime
switching models might be ill-fated, However, none of these
retationships generalises very well into the post-sample pe-
riods which is arguably the most important feature of the
mnodelling process, Censequently the identified models did
nob nprove the quality of point forecasts when compared
to finear models. Future research might examine whether
the incorporation of nopdivearities can improve interval or
dengity forecasts,
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